首页> 外文OA文献 >Influence of the gas injector configuration on the temperature evolution during refuelling of on-board hydrogen tanks
【2h】

Influence of the gas injector configuration on the temperature evolution during refuelling of on-board hydrogen tanks

机译:气体喷射器配置对车载氢气罐加油期间温度演变的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article we show a refueling strategy analysis using different injector configurations to refuel a 70 MPa composite reinforced type 4 tank. The gas has been injected through single openings of different diameters (3 mm, 6 mm and 10 mm) and alternatively through multiple small holes (4 × 3 mm). For each injector configuration, slow (12 min) and faster (3 min) fillings have been performed. The gas temperature has been measured at different positions inside the tank, as well as the temperatures of the wall materials at various locations: on the external surface and at the interface between the liner and the fiber reinforced composite. In general, the larger the injector diameter and the slower the filling, the higher the chance that the gas develops vertical temperature gradients (a so-called gas temperature stratification), resulting in higher than average temperatures near the top of the tank and lower than average at its bottom. While the single 3 mm opening injector causes homogeneous gas temperatures for both filling speeds, both the 6 mm and 10 mm opening injectors induce gas temperature stratification during the 12 min fillings. The injector with multiple holes has an area comparable to the 6 mm single opening injector: in general, this more complex geometry tends to limit the inhomogeneity of gas temperatures during slow fillings. When gas temperature stratification develops, the wall materials temperature is also locally affected. This results in a higher than average temperature at the top of the tank and higher the slower the filling.
机译:在本文中,我们展示了使用不同喷射器配置为70 MPa复合增强4型油箱加油的加油策略分析。气体通过不同直径(3 mm,6 mm和10 mm)的单个开口注入,或者通过多个小孔(4×3 mm)注入。对于每种进样器配置,已经执行了缓慢的(12分钟)和更快的(3分钟)填充。在罐内的不同位置测量了气体温度,并在不同位置测量了壁材料的温度:在外表面以及衬里和纤维增强复合材料之间的界面。通常,喷射器直径越大,填充越慢,气体产生垂直温度梯度(所谓的气体温度分层)的机会就越大,从而导致罐顶附近的温度高于平均温度,并且低于罐顶的温度。平均在其底部。虽然单个3 mm开口的喷射器会导致两种填充速度的气体温度均一,但6 mm和10 mm开口的喷射器会在12分钟的填充过程中引起气体温度分层。具有多个孔的喷油嘴的面积可与6 mm单口喷油嘴相媲美:通常,这种较复杂的几何形状倾向于限制缓慢填充过程中气体温度的不均匀性。当气体温度分层发展时,壁材温度也会受到局部影响。这导致罐顶部的温度高于平均温度,并且温度越高,灌装速度越慢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号